The CAE Medallion™-6000XR series is the latest member in CAE's powerful Medallion image generator family. CAE's Medallion-6000XR image generator builds on the proven features and performance of CAE's long-standing Medallion-6000 family of image generator solutions tailored for the military market. CAE's Medallion-6000XR will continue to leverage the latest commercial-off-the-shelf (COTS) graphics processors and includes enhanced features aimed at supporting a highly realistic and immersive synthetic environment for a variety of applications with industry-leading image quality.

The CAE Medallion-6000XR image generator provides the following training benefits:

- Exceptional image quality and scene density, with detailed environments and realistic night scenes for enhanced fidelity;
- Realistic 3D ocean, wakes and ocean to shore simulation with enhanced whitecap and water illumination effects for improved overall visual cueing;
- Updated scene densities for runways, taxiways, airport contaminants, aprons and terminal buildings delivering unmatched airport realism;
- Support for the recently approved OGC CDB standard enabling more accurate terrain profile and enhanced local terrain features such as rivers and roads;
- Ability to modify OGC CDB synthetic environments at run-time to change the terrain dynamically (CAE Dynamic Synthetic Environment);
- Ideally suited for collective and distributed mission operations training (DMO);
- High-end sensor simulation capabilities.

Key Features

CAE's Medallion-6000XR includes the rich feature set the Medallion family has pioneered for virtual air applications, including fast jet, tanker/transport aircraft and rotary wing visual training, as well as features that make the CAE Medallion-6000XR ideal for creating realistic, immersive synthetic environments for maritime, land and public safety applications. Some of the CAE Medallion-6000XR features include:

- Animated 3D grass and 3D trees;
- Particle-based recirculation and downwash effects;
- Realistic run-time lighting and shadowing effects based on various light sources;
- Craters, weapons effects, and localized damage on any three-dimensional (3D) content or vegetation at runtime;
- Environment reflections on lakes and oceans;
- Dynamic environment full of moving models, special effects and characters;
- Support of OGC CDB standard for ease of content reuse (open specification);
- Reflective model for rainy conditions and fog, including multiple 3D clouds for accurate simulation of weather and the resulting impact on training;
- Sun, moon and stars ephemeris model, physics-based sky model;
- Shader-based light points;
- Smooth dynamic shadows correlated to sun/moon positions (terrain, moving models, buildings, cloud layers, storm models, lamp posts, projected light lobes);
- Particle-based weather simulation including rain, hail, and snow;
- Accurate simulation of weather phenomena's (storm cells, lightning, blowing effects, contaminants, snow scene, wind layers);
- Full suite of special effects, including tracers, missile trails, explosions, smoke, rotor downwash, and recirculation, conforming craters and bullet impact;
- Lifeforms simulation with suite of animations for soldiers, marshalls, and landing signal enlisted (LSE);
- Up to sea state 6 dynamic 3D ocean model with ship wakes, swell and wind lanes and a 2D ocean model for high level flight;
- Comprehensive mission functions (height above terrain, collision detection, line of sight, laser ranging);
- Correlated sensor suite for FLIR, NVG, EVS, EO, Day TV and LLTV computed using sensor textures with 16-bit radiance values and advanced video post-processing;
- Highly scalable visual system entirely based on COTS workstation components;
- Based on industry standards: Windows 7 Embedded, OpenGL, OpenFlight, OGC CDB, CIGI;
- Fully backward compatible with CAE Medallion interfaces and databases;
- Compatible with ultra-high resolution projectors (including 10 million pixel models);
- Low latency (< 52 ms).
Common specifications

- Windows 7 Embedded operating system (64 bits);
- COTS graphic card;
- Sustainable iteration rate: 60 Hz;
- Simulation polygonal capacity: 450,000 at 60 Hz;
- Light point capacity: 275,000 at 60 Hz;
- Internally generated blend zones;
- 1024 addressable moving models;
- Up to 24 level-of-detail (LOD) geo-specific satellite imagery texturing;
- Up to 40GB equivalent through optimized adaptive texture memory paging;
- 256-level alpha transparency;
- Fully projected light lobes;
- HUD overlay support;
- Outstanding performance, leveraging latest graphics processor (GPU) technologies;
- Advanced shader-based 3D engine;
- 16-bit radiance computation with advanced sensor post-processor (SPP);
- Embedded non-linear dome mapping (NLIM) for curved surface projection;
- Multiple-inputs projectors synchronization capability;
- OGC CDB content level selected on-the-fly (one run-time database);
- Assured correlation across OGC CDB systems when operating in network;
- Centralized database repository for ease of database maintenance and deployment (automatic updates to multiple simulators and sites);
- Low operating costs.

Capabilities of CAE Medallion-6000XR

<table>
<thead>
<tr>
<th>Application types</th>
<th>- Full-mission simulator</th>
<th>- FTD/CPT - Role playing station</th>
<th>- Land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Mission rehearsal</td>
<td>- Low-end OTW</td>
<td>- Public Safety</td>
</tr>
<tr>
<td></td>
<td>- High-end out the window (OTW)</td>
<td>- Sensor simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Stealth view display</td>
<td>- Maritime</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of channels</th>
<th>1 to 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-scene anti-aliasing (max.)</td>
<td>32x</td>
</tr>
<tr>
<td>Anisotropic filtering (max.)</td>
<td>16x AF (angle invariant)</td>
</tr>
<tr>
<td>Resolution/Anti-aliasing/Anisotropic filtering (typical application)</td>
<td>2560x1600 NI @ 60 Hz, 16x AA, 8x AF</td>
</tr>
<tr>
<td>Genlock & frame Lock</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Outstanding performance, leveraging latest graphics processor (GPU) technologies;
- Advanced shader-based 3D engine;
- 16-bit radiance computation with advanced sensor post-processor (SPP);
- Embedded non-linear dome mapping (NLIM) for curved surface projection;
- Multiple-inputs projectors synchronization capability;
- OGC CDB content level selected on-the-fly (one run-time database);
- Assured correlation across OGC CDB systems when operating in network;
- Centralized database repository for ease of database maintenance and deployment (automatic updates to multiple simulators and sites);
- Low operating costs.